Helical swimming can provide robust upwards transport for gravitactic single-cell algae; a mechanistic model.

نویسنده

  • R N Bearon
چکیده

In still fluid, many phytoplankton swim in helical paths with an average upwards motion. A new mechanistic model for gravitactic algae subject to an intrinsic torque is developed here, based on Heterosigma akashiwo, which results in upwards helical trajectories in still fluid. The resultant upwards swimming speed is calculated as a function of the gravitactic and intrinsic torques. Helical swimmers have a reduced upwards speed in still fluid compared to cells which swim straight upwards. However a novel result is obtained when the effect of fluid shear is considered. For intermediate values of shear and intrinsic torque, a new stable equilibrium solution for swimming direction is obtained for helical swimmers. This results in positive upwards transport in vertical shear flow, in contrast to the stable equilibrium solution for straight swimmers which results in downwards transport in vertical shear flow. Furthermore, for strong intrinsic torque, when there is no longer a stable orientation equilibrium, we show that the average downwards transport of helical swimmers in vertical shear flow is greatly suppressed compared to straight swimmers. We hypothesise that helical swimming provides robustness for upwards transport in the presence of fluid shearing motions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A biased random walk model for the trajectories of swimming micro-organisms.

The motion of swimming micro-organisms that have a preferred direction of travel, such as single-celled algae moving upwards (gravitaxis) or towards a light source (phototaxis), is modelled as the continuous limit of a correlated and biased random walk as the time step tends to zero. This model leads to a Fokker-Planck equation for the probability distribution function of the orientation of the...

متن کامل

A tale of three taxes: photo-gyro-gravitactic bioconvection.

The term bioconvection encapsulates the intricate patterns in concentration, due to hydrodynamic instabilities, that may arise in suspensions of non-neutrally buoyant, biased swimming microorganisms. The directional bias may be due to light (phototaxis), gravity (gravitaxis), a combination of viscous and gravitational torques (gyrotaxis) or other taxes. The aim of this study is to quantify expe...

متن کامل

Bioconvective dynamics: dependence on organism behaviour.

Bioconvection occurs when a macroscopic nonuniformity of the concentration of microbial populations is generated and maintained by the directional swimming of the organisms. This study investigated the properties of the patterns near the onset of the instability and later during its evolution into a fully nonlinear convection regime. In suspensions of the bacteria Bacillus subtilis, which tend ...

متن کامل

Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics.

We present novel microfluidic experiments to quantify population-scale transport parameters (chemotactic sensitivity chi(0) and random motility mu) of a population of bacteria. Previously, transport parameters have been derived theoretically from single-cell swimming behavior using probabilistic models, yet the mechanistic foundations of this upscaling process have not been verified experimenta...

متن کامل

Gravitaxis of asymmetric self-propelled colloidal particles.

Many motile microorganisms adjust their swimming motion relative to the gravitational field and thus counteract sedimentation to the ground. This gravitactic behaviour is often the result of an inhomogeneous mass distribution, which aligns the microorganism similar to a buoy. However, it has been suggested that gravitaxis can also result from a geometric fore-rear asymmetry, typical for many se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 66 7  شماره 

صفحات  -

تاریخ انتشار 2013